000 to 0 125) Functional domains are currently unidentified for

000 to 0.125). Functional domains are currently unidentified for Ecb, Emp, EsaC, EsxA, EssC, FLIPr, FLIPr-like, SCIN-B and SCIN-C. Intralineage variation is present in check details Coa, Efb, Emp,

EssC, FLIPr, Sbi and VWbp at low levels (proportion of variable sites < 0.0 19) and absent in the remaining proteins. The exception is FLIPr-like which is more variable and frequently truncated. The level of and location of intralineage variation differs between the CC5, CC8 and CC30 lineages. The secreted proteins involved in immune evasion of S. aureus lineages may be differentially adapted, but that there was little adaptation of strains within lineages. An example of a highly variable immune evasion gene, coa or coagulase, is shown in more detail in additonal file 4 Table S4. There are a variety of conserved domains spread

amongst the lineages. Similarly to FnBPA, unrelated lineages often share the same domain variants (Additonal file 4 Table S4). However, there is less evidence of recombination within the coa gene than within the fnbpA gene as there are fewer examples of unrelated lineages sharing the same sequence MK-8931 variant. An exception to Vorinostat order this is the C terminus. The pig CC398 coa gene is highly similar to the human CC45 coa gene. The avian CC5 strain has the same gene as the human CC5. The bovine CC425 is similar to human CC5 genes but has a different central region, while the bovine CC151 strain has a unique coa gene. Resminostat Animal lineages possess unique combinations of Coa domain variants that are not found in human lineages, similar to FnBPA (Additonal file 4 Table S4). Animal lineages also have a unique combination of domain variants for other secreted proteins (Emp and VwBP). Animal lineages possess unique domain variants in EssC, SCIN-B and VwBP, whilst for other secreted proteins (Ecb, Efb, EsaC, EsxA, FLIPr, FLIPr-like,

SCIN-C and Sbi) animal lineages do not have unique domain variants or a unique combination of domain variants. Microarray data Microarray data is useful for confirming the distribution of genes amongst large populations, for showing that lineages are conserved, and investigating unsequenced lineages. Using the seven-strain S. aureus microarray the 400 isolates, representing MSSA, HA-MRSA, CA MRSA and from human, bovine, equine, pig, goat, sheep and camel, clustered into 20 dominant lineages. The distribution of surface and secreted gene variants is shown in Fig. 1, and confirms that all strains of a lineage usually carry the same distribution of surface and immune evasion genes and variants, and that variants are often distributed across unrelated lineages.

Leave a Reply

Your email address will not be published. Required fields are marked *


You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>