Based on these results, two successive 2(3) full factorial design

Based on these results, two successive 2(3) full factorial design experiments were run in which the effects of substrate concentration, orbital agitation speed and pH were further studied. These two sets of experiments showed that all variables chosen were significant for the enzyme production, with the maximum collagenolytic activity of 6.8 +/- 0.4 U achieved at pH 7.0 with an orbital agitation speed of 160 rpm and 2% substrate concentration. Maximum collagenolytic activity was observed at pH 8.2 and 45 degrees C. The collagenase was stable within a pH range of 7.2-8.2 and over a temperature range of 28-45 degrees C. These results HSP990 clearly indicate that C. albicans

URM3622 is a potential resource for collagenase production and could be of interest for pharmaceutical, cosmetic and food industry. Crown Copyright (C) 2008 Published by Elsevier B.V. All rights reserved.”
“The PF-562271 concentration use of natural compounds is an interesting stratagem in the search of drugs with therapeutic potential for the treatment of Alzheimer’s disease (AD). We report here the effect of the hyperforin derivative (IDN5706, tetrahydrohyperforin), a semi-synthetic

derivative of the St. John’s Wort, on the brain neuropathology, learning and memory in a double transgenic (APPswe, PS-1dE9) mouse model of AD. Results indicate that, IDN5706 alleviates memory decline induced by amyloid-beta (A beta) deposits as indicated by the Morris water maze paradigm. Moreover, the analysis of A deposits by immunodetection and thioflavin-S staining of brain sections, only reveals a decrease in the frequency of the larger-size A beta deposits, Selleckchem SGC-CBP30 suggesting that IDN5706 affected the turnover of amyloid plaques. Immunohistochemical analysis, using GFAP and n-Tyrosine indicated that the hyperforin derivative prevents the inflammatory astrocytic reaction and the oxidative

damage triggered by high A beta deposit levels. We conclude that the hyperforin derivative, IDN5706, has therapeutic potential for prevention and treatment of AD.”
“Osmolyte molecules such as betaine and trehalose are protein stabilizers while L-arginine (Arg) and guanidine hydrochloride (GdnHCl) are the most widely used aggregation suppressor in protein refolding. We have herein studied the effects of the osmolyte molecules and L-arginine together with GdnHCl (0-6 mol/L) on the intermolecular interaction of native and denatured lysozyme by self-interaction chromatography. The self-interaction is characterized in terms of the osmotic second virial coefficient (B) of the protein, the increase of which represents the decrease of intermolecular attraction of the protein. It is found that the effect of Argon the self-interaction of lysozyme is similar with GdnHCl, but its competence is much weaker than the denaturant. At higher GdnHCl concentrations (>0.5 mol/L), Arg can be used to suppress the self-association of lysozyme.

Leave a Reply

Your email address will not be published. Required fields are marked *

*

You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>